精品卡二卡三卡四卡无卡免费,美女被张开双腿日出白浆,成全视频在线观看在线播放高清,强行18分钟处破痛哭AV

產品|公司|采購|招標

網站幫助網站服務發布采購發布供應

HPV 莖流量傳感器/Sap Flow Sensor

參考價面議
具體成交價以合同協議為準
產品標簽:

在線詢價收藏產品 點擊查看聯系電話

北京博倫經緯科技發展有限公司專業致力于氣象,農業,生態,環境,土壤,水質等方面的測試儀器的生產和推廣,公司產品廣泛應用于教學科研,農業氣象,水文地質,風景園林監管、森林預警、海洋、軍事、建筑、農業溫室、航天等重多領域,具有性能穩定,檢測精度高,無人值守,抗力強、軟件功能豐富等優點被全國眾多院校廣泛采用,并獲得。同時公司大量引進國內外各種*的在線、離線儀器儀表、機電礦山設備、為各行業用戶提供了大量的產品和服務,尤其在氣象農業、土壤、農林、環保、機械、科技教學國際貿易、、系統集成、工程咨詢、維修服務,技術服務,技術開發,技術咨詢等領域。,與世界眾多專業廠家有密切合作關系。同時,公司充分利用國際互聯網絡的優勢,不僅能為用戶提供泛的產品選擇機會,獲得的性價比,還可以為用戶快捷提供科技信息。

     我公司生產的有:自動氣象站、農業氣象站、校園氣象站、高速公路氣象站、田間小氣候氣象觀測站、新能源光伏電力環境監測系統、太陽能輻射標準監測系統、總輻射傳感器、散輻射傳感器、直接輻射傳感器、反射輻射傳感器、凈輻射傳感器。代理的產品品牌:美國Davis荷蘭Kipp&Zonen荷蘭Hukseflux美國R.M.young維薩拉vaisala美國RainWise 公司德國OTT公司 、德國LUFFT、等國際氣象監測儀器

     北京博倫經緯科技發展有限公司出廠的儀器設備被越來越多的顧客譽為最信得的產品。在加強企業內部管理的同時,公司更注重追求全體員工對產品質量的高度重視和對顧客的真誠奉獻。我公司在不斷地開拓市場、質量取勝、壯大自身的同時贏得了業內廣泛贊譽。
稟承追求質量、服務的一貫宗旨,攜手與您共創輝煌的明天。 

雨量計
HPV 莖流量傳感器/Sap Flow Sensor
HPV 莖流量傳感器/Sap Flow Sensor 產品信息

HPV 莖流量傳感器/Sap Flow Sensor

T{UW85(FAJMR)E12L3I[RUG.png

HPV莖流量傳感器是一款校準型、低成本的熱脈沖液流傳感器,輸出校準液流量、熱速、莖水含量、莖溫等數據,功耗低,內置加熱控制,同時改善了傳統的加熱方式,其原理采用雙方法(DMA)熱脈沖法,測量范圍:-200~+1000cm/hr(熱流速度)或-100~+2000cm3/cm2/hr (莖流通量密度),可廣泛用于于莖流量監測、植物莖流蒸發計算、植物莖流蒸騰量、植物灌溉等
植物莖流是樹木內部的“水”運動,而蒸騰是從葉片通過光合作用蒸發流出的水分。樹液流量和蒸騰量之間有很強的關聯性,通常理解是同一回事。但是,嚴格地說,它們是不同的,這體現在它們是如何被測量的。
SAP流量以L/hr(或每天、每周等)為單位進行測量。蒸騰量以每小時、每天、每星期等毫米(mm)為單位測量。
蒸散量=蒸騰量+蒸發量
蒸騰量以毫米為測量單位,可與降雨量以毫米計作比較。隨著時間的推移,降雨量(水輸入)應與蒸騰量(輸出)相匹配。如果蒸騰作用更高,通常是樹木作物的蒸騰作用,那么這種差異必須通過灌溉來彌補。
蒸發量(evaporation),蒸發量是指在一定時段內,由土壤或水中的水分經蒸發而散布到空中的量。

1mm(降雨量)=1㎡地面1kg水
1mm(蒸騰量)=1㎡葉面積的1升樹液流量(水)

例如:在果園和葡萄園等有管理的樹木作物系統中,蒸發量與蒸騰量相比非常小。因此,為了簡化測量,通常忽略蒸發量,將蒸騰量取為平均蒸散量(ETo)。

莖流量傳感器廣泛應用
計算總流量
低液流和零液流速率
反向液流速率
夜間水分損失
根莖液流速度
貧瘠生態系統及干旱
徑向液體流速
葡萄藤的液流

莖流量傳感器 技術指標
測量范圍:-200~+1000cm/hr(熱流速度)
分辨率:0.001cm/hr
準確度:±0.1cm/hr
探針尺寸:φ1.3mm*L30mm
溫度位置:外10mm,內20mm
針距:6mm
探針材質:316不銹鋼
溫度范圍:-30~+70℃
響應時間:200ms
加熱電阻:39Ω,400J/m
電源:12V DC
電流:空閑5mA, 測量<270mA
線纜:5m,*大60m



莖流量傳感器參考文獻:
1. Kim, H.K.; Park, J.; Hwang, I. Investigating water transport through the xylem network in vascular plants.
J. Exp. Bot. 2014, 65, 1895–1904. [CrossRef] [PubMed]

2. Steppe, K.; Vandegehuchte, M.W.; Tognetti, R.; Mencuccini, M. Sap flow as a key trait in the understanding of plant hydraulic functioning. Tree Physiol. 2015, 35, 341–345. [CrossRef] [PubMed]

3. Vandegehuchte, M.W.; Steppe, K. Sap-flux density measurement methods: Working principles and
applicability. Funct. Plant Biol. 2013, 40, 213–223. [CrossRef]

4. Marshall, D.C. Measurement of sap flow in conifers by heat transport. Plant Physiol. 1958 , 33, 385–396.
[CrossRef] [PubMed]

5. Cohen, Y.; Fuchs, M.; Green, G.C. Improvement of the heat pulse method for determining sap flow in trees. Plant Cell Environ. 1981, 4, 391–397. [CrossRef]

6. Green, S.R.; Clothier, B.; Jardine, B. Theory and practical application of heat pulse to measure sap flow.
Agron. J. 2003, 95, 1371–1379. [CrossRef]

7. Burgess, S.S.O.; Adams, M.A.; Turner, N.C.; Beverly, C.R.; Ong, C.K.; Khan, A.A.H.; Bleby, T.M. An improved heat-pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 2001 , 21, 589–598. [CrossRef]

8. Forster, M.A. How reliable are heat pulse velocity methods for estimating tree transpiration? Forests 2017 , 8, 350. [CrossRef]

9. Bleby, T.M.; McElrone, A.J.; Burgess, S.S.O. Limitations of the HRM: Great at low flow rates, but no yet up to speed? In Proceedings of the 7th International Workshop on Sap Flow: Book of Abstracts, Seville, Spain, 22–24 October 2008.

10. Pearsall, K.R.; Williams, L.E.; Castorani, S.; Bleby, T.M.; McElrone, A.J. Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions. Funct. Plant Biol. 2014, 41, 874–883. [CrossRef]

11. Clearwater, M.J.; Luo, Z.; Mazzeo, M.; Dichio, B. An external heat pulse method for measurement of sap flow through fruit pedicels, leaf petioles and other small-diameter stems. Plant Cell Environ. 2009 , 32, 1652–1663.[CrossRef]

12. Green, S.R.; Romero, R. Can we improve heat-pulse to measure low and reverse flows? Acta Hortic. 2012 , 951, 19–29. [CrossRef]

13. Green, S.; Clothier, B.; Perie, E. A re-analysis of heat pulse theory across a wide range of sap flows. Acta Hortic. 2009, 846, 95–104. [CrossRef]

14. Ferreira, M.I.; Green, S.; Concei??o, N.; Fernández, J. Assessing hydraulic redistribution with the
compensated average gradient heat-pulse method on rain-fed olive trees. Plant Soil 2018 , 425, 21–41.
[CrossRef]

15. Romero, R.; Muriel, J.L.; Garcia, I.; Green, S.R.; Clothier, B.E. Improving heat-pulse methods to extend the measurement range including reverse flows. Acta Hortic. 2012, 951, 31–38. [CrossRef]

16. Testi, L.; Villalobos, F. New approach for measuring low sap velocities in trees. Agric. Meteorol. 2009 , 149, 730–734. [CrossRef]

17. Vandegehuchte, M.W.; Steppe, K. Sapflow+: A four-needle heat-pulse sap flow sensor enabling nonempirical sap flux density and water content measurements. New Phytol. 2012, 196, 306–317. [CrossRef] [PubMed]

18. Kluitenberg, G.J.; Ham, J.M. Improved theory for calculating sap flow with the heat pulse method.
Agric. For. Meteorol. 2004, 126, 169–173. [CrossRef]

19. Vandegehuchte, M.W.; Steppe, K. Improving sap-flux density measurements by correctly determining
thermal diffusivity, differentiating between bound and unbound water. Tree Physiol. 2012 , 32, 930–942.
[CrossRef]

20. Looker, N.; Martin, J.; Jencso, K.; Hu, J. Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agric. For. Meteorol. 2016, 223, 60–71. [CrossRef]

21. Edwards, W.R.N.; Warwick, N.W.M. Transpiration from a kiwifruit vine as estimated by the heat pulse
technique and the Penman-Monteith equation. N. Z. J. Agric. Res. 1984, 27, 537–543. [CrossRef]

22. Becker, P.; Edwards, W.R.N. Corrected heat capacity of wood for sap flow calculations. Tree Physiol 1999 , 19, 767–768. [CrossRef]

23. Hogg, E.H.; Black, T.A.; den Hartog, G.; Neumann, H.H.; Zimmermann, R.; Hurdle, P.A.; Blanken, P.D.;
Nesic, Z.; Yang, P.C.; Staebler, R.M.; et al. A comparison of sap flow and eddy fluxes of water vapor from a
boreal deciduous forest. J. Geophys. Res. 1997, 102, 28929–28937. [CrossRef]

24. Barkas, W.W. Fibre saturation point of wood. Nature 1935, 135, 545. [CrossRef]

25. Kollmann, F.F.P.; Cote, W.A., Jr. Principles of Wood Science and Technology: Solid Wood; Springer: Berlin Heidelberg, Germany, 1968.

26. Swanson, R.H.; Whitfield, D.W.A. A numerical analysis of heat pulse velocity and theory. J. Exp. Bot. 1981 ,32, 221–239. [CrossRef]

27. Barrett, D.J.; Hatton, T.J.; Ash, J.E.; Ball, M.C. Evaluation of the heat pulse velocity technique for measurement of sap flow in rainforest and eucalypt forest species of south-eastern Australia. Plant Cell Environ. 1995 , 18, 463–469. [CrossRef]

28. Biosecurity Queensland. Environmental Weeds of Australia for Biosecurity Queensland Edition; Queensland Government: Brisbane, Australia, 2016.

29. Steppe, K.; de Pauw, D.J.W.; Doody, T.M.; Teskey, R.O. A comparison of sap flux density using thermal
dissipation, heat pulse velocity and heat field deformation methods. Agric. For. Meteorol. 2010 , 150, 1046–1056. [CrossRef]

30. López-Bernal, A.; Testi, L.; Villalobos, F.J. A single-probe heat pulse method for estimating sap velocity in trees. New Phytol. 2017, 216, 321–329. [CrossRef] [PubMed]

31. Forster, M.A. How significant is nocturnal sap flow? Tree Physiol. 2014, 34, 757–765. [CrossRef] [PubMed]

32. Cohen, Y.; Fuchs, M.; Falkenflug, V.; Moreshet, S. Calibrated heat pulse method for determining water uptake in cotton. Agron. J. 1988, 80, 398–402. [CrossRef]

33. Cohen, Y.; Takeuchi, S.; Nozaka, J.; Yano, T. Accuracy of sap flow measurement using heat balance and heat pulse methods. Agron. J. 1993, 85, 1080–1086. [CrossRef]

34. Lassoie, J.P.; Scott, D.R.M.; Fritschen, L.J. Transpiration studies in Douglas-fir using the heat pulse technique. For. Sci. 1977, 23, 377–390.

35. Wang, S.; Fan, J.; Wang, Q. Determining evapotranspiration of a Chinese Willow stand with three-needleheat-pulse probes. Soil Sci. Soc. Am. J. 2015, 79, 1545–1555. [CrossRef]

36. Bleby, T.M.; Burgess, S.S.O.; Adams, M.A. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 2004 , 31, 645–658.[CrossRef]

37. Madurapperuma, W.S.; Bleby, T.M.; Burgess, S.S.O. Evaluation of sap flow methods to determine water use by cted palms. Environ. Exp. Bot. 2009, 66, 372–380. [CrossRef]

38. Green, S.R. Measurement and modelling the transpiration of fruit trees and grapevines for irrigation
scheduling. Acta Hortic. 2008, 792, 321–332. [CrossRef]

39. Intrigliolo, D.S.; Lakso, A.N.; Piccioni, R.M. Grapevine cv. ‘Riesling’ water use in the northeastern United
States. Irrig. Sci. 2009, 27, 253–262. [CrossRef]

40. Eliades, M.; Bruggeman, A.; Djuma, H.; Lubczynski, M. Tree water dynamics in a semi-arid, Pinus brutia
forest. Water 2018, 10, 1039. [CrossRef]

41. Zhao, C.Y.; Si, J.H.; Qi, F.; Yu, T.F.; Li, P.D. Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regul. 2017, 82, 353–362. [CrossRef]

42. Deng, Z.; Guan, H.; Hutson, J.; Forster, M.A.; Wang, Y.; Simmons, C.T. A vegetation focused soil-plant-atmospheric continuum model to study hydrodynamic soil-plant water relations. Water Resour. Res. 2017, 53, 4965–4983. [CrossRef]

43. Doronila, A.I.; Forster, M.A. Performance measurement via sap flow monitoring of three Eucalyptus species for mine site and dryland salinity phytoremediation. Int. J. Phytoremed. 2015, 17, 101–108. [CrossRef]

44. López-Bernal, á.; Alcántara, E.; Villalobos, F.J. Thermal properties of sapwood fruit trees as affected by
anatomy and water potential: Errors in sap flux density measurements based on heat pulse methods. Trees
2014, 28, 1623–1634. [CrossRef]

在找 HPV 莖流量傳感器/Sap Flow Sensor 產品的人還在看

對比欄

提示

×

*您想獲取產品的資料:

以上可多選,勾選其他,可自行輸入要求

個人信息:

對比欄

下載塑機通APP
讓生意變得更容易!塑機通APP
微信公眾號

微信公眾號

客服部:122500707市場部:2976704939